
new vertex
arrives

The parent PE can detect if its
children workloads are different

.

3 4

.

BEFORE AFTER

Modern distributed non-spatial ABMS frameworks lack built-in load-
balancing that minimizes communication as the simulation graph evolves

over time
Multilevel graph partitioners (MGP) like Zoltan, ParMETIS, and ParHIP provide

good-quality partitioning that minimizes communication and balances
workload. However, they require full graph repartitioning during simulation
time when rebalancing.

To rebalance using MGP, the simulation halts while the distributed MGP runs.

Once the new partition is obtained, the graph is rebuilt before resuming.

We propose building a hierarchical dynamic multilevel
graph partitioning (HDMGP) tool to balance non-spatial
ABMS
Our tool aims to keep multiple abstractions of the graph at
each level of the hierarchy and update portions of the graph
when required

This tool could be run in a separate set of processing elements
(PEs) from the simulation ones, so the monitoring and rebalance
is performed dynamically, without halting the simulation

EFFICIENT LOAD BALANCING MECHANISM FOR
PARALLEL NON-SPATIAL ABMS

1 Universitat Autònoma de Barcelona, Departament d’Arquitectura de Computadors i Sistemes Operatius, Bellaterra, Spain
2 Escola Universitària Salesiana de Sarrià, Barcelona, Spain

Cristina Peralta , Eduardo César , Andreu Moreno , Anna Sikora1 1 1,2 1

HIERARCHICAL DYNAMIC MULTILEVEL GRAPH PARTITIONING

Introduction

GOAL: obtain an initial partition of the graph and update it as the simulation progresses

Once the hierarchy is created, the simulation
can begin with the designated partition. As the
simulation progresses, the graph may change,
requiring updates to the partition to maintain
balance. Any new vertex arriving

should be assigned a
group, the groups of
vertices whose
neighborhood change
must be reevaluated

Imbalance
detected

. . .

Trigger
repartitioning

Produce a new partition of the graph on the
intermediate PE & forward to the child PEs

(4) The new partition is forwarded to
the simulation PEs so the graph is
updated

. . .

an imbalance may
appear that
requires to
repartition
the graph

When changes on the graph occur,

PEs at higher levels monitor for
imbalances among their children
and trigger repartitioning.

Detecting Imbalances & Creating a new partition

2. Send the new partition
down the hierachy

 Create a new partition using a graph
partitioner

1.

Update the graph + reevaluate the groups
on the leaves

Update Weights
Assigning new vertices to a group

modifies its weight

After reassessing groups on a graph
change, weight contributions must be
recalculated and sent to parent levels
to update the total weight at all levels

Proposal

(3) update child PEs with
the new balanced partition

Conclusion
We propose a dynamic approach for MGP using a hierarchical
structure that maintains and updates the abstractions of the graph
generated during coarsening. This allows for repartitioning parts of
the graph when imbalances are detected.

The proposed HDMGP will run on separate PEs from the simulation,
enabling repartitioning without halting the simulation's execution.

Acknowledgements
This work has been granted by the Ministerio de Ciencia e Innovación MCIN AEI/10.13039/501100011033 under contract
PID2020-113614RB-C21 and PID2023-146193OB-I00 and by the Catalan government under contract 2021 SGR 00574.

ParHIP MGP can be integrated into HDMGP. However, changes are necessary:
Modify the graph structure to allow dynamic graphs 1.
Keep LPA for coarsening while modifying weight aggregation to leverage the hierarchical structure2.
Modify uncoarsening to allocate graph abstractions at each hierarchy level while keeping the
refinement algorithm (LPA)

3.

A mechanism for monitoring communications, workload, and triggering rebalancing should be
implemented. The HDMGP should run in a separate set of MPI processes using MPI inter-
communicator operations.

Modifying ParHIP as HDMGP

HDMGP
Obtain the initial partition of the simulation graph
Create the hierarchical structure

This phase is repeated over time, aiming to
update partition whenever required

Load Graph Perform the Initial Partitioning

Initialization Phase :

Initial
Coarsening

Initial
Partitioning

Initial
Uncoarsening

[Runs once each simulation]

All steps are
detailed below

Monitoring for rebalance

Update the graph + reevaluate
groups on leaves

Update weights Create a new partition

Repeated during simulation to update the partition

After the initial partitioning, the
simulation is monitored to
trigger rebalance if requred

imbalance
detected?

yes

no

Rebalance Phase :

Overview :

3
3 3

1
4

6

4 3

6

4
9

CURRENT LEVEL

9

6

4

3

4

6

...

Initial Partitioning Phase Initial Uncoarsening Phase

The root's graph is divided
into as many groups as it has
children

A group is assigned to each
child

Every child owns the vertices
in their abstraction of the
graph that belong to its
assigned partition

After Initial Coarsening, the partitioning begins at the root

level of the hierarchy receives a partition from its parent
level, projects it into its vertices,
refines it, creates a new partition

 for its children and
 forwards it to them

The uncoarsening is an iterative process in which each

This phase ends when
the leaves of the graph
receive and refine the
final partition of the
graph

...

A new current level
is set as the parent
of the previous one

Found vertices and
their edges are sent
to the PEs of the
new current level

 starts at the leaves
and moves upwards
every step NEW

CURRENT LEVEL

PREVIOUS

LEVEL

Find Groups of Vertices Create next level graph
Initial Coarsening Phase

Not yet at the root
Initial Coarsening ends when the root owns a graph

Root
PE

Intermediate
PEs

Leave PEs

Simulation
PEs

The root is reached

Initial Coarsening is executed once at the beginning of the simulation

Agreggate Weights

...

Edge & vertex weights are
added up in each PE at the
current level

Once added, weights
are forwarded to the
next upper level

After finding the groups on the current level :

At the end, the root PE
held the total weights
and the count of the
new vertices

As new vertices are found (one per group), a new graph is
created at the new current level. This graph contains the
new vertices and its edges (weighted)

The new distributed
graph is recreated
on new current level

Initialization Phase

Group vertices in the current level using
Label Propagation Algorithm (LPA)

Rebalancing Phase

