Els imants moleculars s’estan investigats intensament en l’actualitat per al seu gran potencial d’aplicació com a qubits per a computació quàntica, així com elements d’emmagatzematge d’informació. En efecte, els SIMs (Single-Ion Magnets en anglès) basats en lantànids presenten magnetització permanent i histèresi associades a un sol ió, el que permetria augmentar enormement la densitat d’emmagatzematge.
El funcionament d’aquest nou tipus d’electrònica (anomenada “spintrònica”), es basa en la capacitat d’aquests sistemes de mantenir dos estats estables, amb el spin electrònic “cap amunt” (1) o “cap avall” (0), ben separats per una barrera d’energia. No obstant això, hi ha diversos mecanismes que permeten la relaxació del spin entre els dos estats: d’una banda es pot produir una relaxació “lenta“, en la qual el spin es tomba “saltant” per sobre de la barrera energètica; però també pot donar-se una relaxació ultraràpida mitjançant “tunneling quàntic” a través de la barrera (Fig. 1). Per tant, de cara a realització de dispositius cal conèixer els factors que controlen el “tunneling quàntic“, per tal de bloquejar-lo en la mida que sigui possible.
En un treball recentment publicat a Nature Communications, investigadors de la Universitat de Copenhaguen, amb la col·laboració d’Elena Bartolomé (EUSS) i membres de l’ICMA-Saragossa han aconseguit demostrar com es pot reduir el “tunneling quàntic” dissenyant adequadament la simetria de l’imant molecular mitjançant enginyeria química.
En el treball es van sintetitzar dos SIMs basats en Disprosi (Fig. 2): el complex 1Dy amb simetria C4, i el 2Dy pràcticament idèntic però amb simetria lleugerament menor, D4d. Es varen determinar experimentalment els nivells energètics produïts per al camp cristal·lí diferent en cada cas. L’estudi de la dinàmica de relaxació d’aquests dos complexos fins a temperatures properes als miliKelvins, va permetre concloure que el complex amb major simetria presenta una taxa de relaxació per tunneling fins a 5 vegades menor (Fig. 3).