Imants moleculars de {Tb/Eu} amb luminiscència ajustable

El camp dels materials multifuncionals basats en molècules està avançant ràpidament en els últims anys. Els  complexos basats en lantànids són especialment atractius, ja que les seves propietats electròniques les fan adequats tant per a la construcció d’imants moleculars així com a agents luminescents. En particular els polímers heteronuclears són extremadament interessants per la seva aplicació com a sensors o LEDs, ja que variant la relació d’ions es pot ajustar tant la brillantor d’emissió com el color del material.

Figura 1. Els nous complexes de {Tb/Eu) sintetitzats presenten luminiscència I comportament d’imants moleculars.

L’Elena Bartolomé, en col·laboració amb investigadors de l’ICMA i el Dep. Química de la Universidad de Zaragoza, l’Academy of Sciences of Moldova, i l’Institut “Petru Poni”  (Romania) acaben de publicar a la revista J. Mat. Chem. C un treball sobre la síntesi i caracterització d’un nou complex mixte {Tb/Eu} [“Heteronuclear {TbxEu1-x} furoate 1D polymers presenting luminescent properties and SMM behavior”, J. Mat. Chem C, 6, 5286 (2018)].

Figura 2. Variant la proporció de Tb/Eu es pot obtenir luminescència de color variable entre el vermell i el verd.

En aquest treball s’ha estudiat com la substitució d’ions de Tb per ions d’Eu en l’estructura de cadena polimèrica (Figura 1) influencia les propietats luminescents i magnètiques. Els estudis de luminescència mostren la capacitat de sensibilització del lligand d’àcid fòric. L’estratègia heterodinuclear ha permès obtenir luminiscència de color variable del verd al vermell (Figura 2). A més, els mesuraments de susceptibilitat d’ac en freqüències i temperatures variables revelen que els complexos mixtes {TbxEu1-x} presenten una dinàmica de relaxació lenta induïda pel camp. Els complexos {TbxEu1-x} representen un rar exemple de material multifuncional de baixa dimensió que combina tant propietats magnètiques d’imant molecular (SMM) com luminescència.

El “Bon dia” del mes d’abril

La temàtica del “Bon dia” del mes d’abril ha girat entorn de la commemoració del 50a aniversari de la mort del líder del moviment pels Drets Civils, Martin Luther King (4 d’abril del 1968). 

S’han treballat un conjunt de frases per pensar, que neixen de la seva llarga i constant lluita pels Drets Civils, com el seu famós discurs, “I have a dream” del 28 d’agost de 1963.

Article treballat a l’aula: Martin Luther King

Aquesta activitat és un dels mitjans plantejats al projecte universitari.

Engineering quantum tunneling: publicació a Nature Communications

Els imants moleculars s’estan investigats intensament en l’actualitat per al seu gran potencial d’aplicació com a qubits per a computació quàntica, així com elements d’emmagatzematge d’informació. En efecte, els SIMs (Single-Ion Magnets en anglès) basats en lantànids presenten magnetització permanent i histèresi associades a un sol ió, el que permetria augmentar enormement la densitat d’emmagatzematge.

El funcionament d’aquest nou tipus d’electrònica (anomenada “spintrònica”), es basa en la capacitat d’aquests sistemes de mantenir dos estats estables, amb el spin electrònic “cap amunt” (1) o “cap avall” (0), ben separats per una barrera d’energia. No obstant això, hi ha diversos mecanismes que permeten la relaxació del spin entre els dos estats: d’una banda es pot produir una relaxació “lenta“, en la qual el spin es tomba “saltant” per sobre de la barrera energètica; però també pot donar-se una relaxació ultraràpida mitjançant “tunneling quàntic” a través de la barrera (Fig. 1). Per tant, de cara a realització de dispositius cal conèixer els factors que controlen el “tunneling quàntic“, per tal de bloquejar-lo en la mida que sigui possible.

En un treball recentment publicat a Nature Communications, investigadors de la Universitat de Copenhaguen, amb la col·laboració d’Elena Bartolomé (EUSS) i membres de l’ICMA-Saragossa han aconseguit demostrar com es pot reduir el “tunneling quàntic” dissenyant adequadament la simetria de l’imant molecular mitjançant enginyeria química.
En el treball es van sintetitzar dos SIMs basats en Disprosi (Fig. 2): el complex 1Dy amb simetria C4, i el 2Dy pràcticament idèntic però amb simetria lleugerament menor, D4d. Es varen determinar experimentalment els nivells energètics produïts per al camp cristal·lí diferent en cada cas. L’estudi de la dinàmica de relaxació d’aquests dos complexos fins a temperatures properes als miliKelvins, va permetre concloure que el complex amb major simetria presenta una taxa de relaxació per tunneling fins a 5 vegades menor (Fig. 3).

EUSS MotorSport: la revista digital d’abril

S’ha publicat la revista número 2 del mes d’abril on trobareu les darreres novetats. Pas a pas defineix el camí que estan realitzant, avançant amb petites passes cada dia i sense aturar-se.
Per altra banda ja es disposa de nou merchandising que es pot adquirir contactant amb l’equip al correu, eussmotorsport@campus.euss.org

Cliqueu aquí per endinsar-vos!!!

Mario Lanza, Alumni i investigador a la Xina: “El futur de la nanoelectrònica són les computadores neuromòrfiques”

El Mario Lanza és Alumni de l’EUSS i doctor en Electrònica. Actualment lidera un equip de 20 investigadors a la Soochow University de la Xina. És expert en nanotecnologia i guanyador del prestigiós premi Young 1000 Talent. La seva investigació actual se centra en la fabricació de memòries electròniques capaces d’emmagatzemar grans quantitats d’informació. En aquesta entrevista, conversem amb ell sobre el present i el futur de la nanotecnologia, aplicat tant a l’electrònica com a altres camps, des de la seva experiència en el grup que lidera. 

Com ha evolucionat la teva trajectòria professional?

Vaig estudiar als Salesians de Sarrià. Primer vaig completar dos anys de formació professional i dos de batxillerat tecnològic. Després vaig començar a l’EUSS l’any 2000, on vaig estudiar Enginyeria Tècnica Industrial especialitat en Electrònica. Durant el 2004 vaig treballar en una empresa d’enginyeria a Sabadell com a becari, i va ser llavors quan em vaig adonar que amb una enginyeria tècnica no en tindria prou per arribar a on jo volia. Entre 2004 i 2006 vaig cursar una enginyeria superior en electrònica a la UAB. L’últim semestre el vaig fer a Alemanya, al Deggendorf institute of Technology amb col·laboració amb l’empresa Infineon Technologies.

Després d’això, vaig fer el Màster en Micro i Nanotecnologia a la UAB i vaig començar el doctorat a la mateixa universitat. Em van donar la beca de La Caixa per marxar a Alemanya com a estudiant de doctorat d’intercanvi durant tot el 2008, i vaig apostar pel mateix centre on ja vaig estar l’any 2006. Vaig continuar la meva tesi doctoral mig any a la Universitat de Manchester a través d’una beca del Ministeri. Aleshores vaig demanar més beques per estudiar fora d’arreu del món i vaig acabar amb dues ofertes: una per quedar-me a Manchester guanyant 3.000 euros al mes i l’altra per anar a la Xina per 300. Vaig triar la segona, anar a la Peking University, perquè hi havia una màquina com la que faig servir per als meus experiments a Alemanya, i vaig anar allà amb les meves mostres.

Vas apostar per poder fer els experiments que t’interessaven per davant dels diners.

Sí. A més, des que vaig posar el peu a la Xina al 2009, ja no he tornat. Després del doctorat, em van dir de fer el post-doctorat també allà. Però sí que vaig tenir un parèntesi d’un any i mig en què vaig anar a la Universitat de Stanford amb la beca Marie Curie. Vaig tornar a la Xina el 2013, a la Soochow University, com a professor titular fins al 2017 i com a catedràtic des de llavors. Des del 2013 hem anat creixent i ara mateix al meu grup d’investigació som 20 investigadors, contant estudiants de màster, de doctorat, post-docs i estudiants visitants d’intercanvi.

En aquest període el govern Xinès em va concedir el premi Young 1000 Talent, que et dóna un finançament de tres milions de iuans. Això vindrien a ser uns 450.000 euros, però contant que a la Xina els costos de materials i producció són molt més baixos, donen per molt més. També sóc editor d’algunes revistes científiques (com la Nature Scientific Reports) i miro de participar activament en comitès internacionals de conferències de l’IEEE.

Per què creus que ha estat rellevant estudiar a l’EUSS per a la teva carrera?

Vaig aprendre molt de les pràctiques, especialment les de laboratori. Van ser de les més difícils que he fet mai, però em van generar una base tan sòlida en l’àmbit professional que després tot ha estat més fàcil. De fet, he après habilitats que després he aplicat amb els estudiants del meu grup de recerca. Per fer els nostres experiments, una de les característiques que tenim és que ajuntem dues màquines i aconseguim mesurar coses que ningú més mesura. Això és molt similar al que fèiem als laboratoris de l’EUSS, a base de fer connexions amb cables i sincronitzar equip.A més, és un dels lemes de l’EUSS: aprendre fent. Al meu grup de recerca deixo que els alumnes intentin sortir sols dels problemes a base de proves.

Quins experiments esteu duent a terme en el teu grup d’investigació?

Ens hem especialitzat en una eina que es diu conductive atomic force microscope. En el meu grup, doncs, analitzem materials aïllants de gruixos d’entre 0,3 i 10 nanòmetres. En la majoria de components electrònics, l’element més important de base és el semiconductor, però on els dispositius fallen més és per l’aïllant. Nosaltres investiguem aïllants aplicant camps elèctrics, i mirem quan es trenquen i com. La diferència que tenim amb altres grups de recerca que també analitzen aquests elements és que nosaltres ho fem amb aquesta màquina, que aplica el camp elèctric en una àrea molt petita. D’aquesta manera, és molt localitzat i gràcies a això podem trobar l’origen del problema. Som capaços de generar mapes de corrent i determinar en quin punt en concret falla el dispositiu, ja es poden mesurar tots els punts per separat.

Llavors es pot dir que us heu diferenciat gràcies a l’ús d’aquesta màquina?

Sí, de fet acabem d’editar el primer llibre en aquest camp per a l’editorial Wiley-VCH. Però també ens diferenciem perquè hem començat a estudiar nous materials aïllants que fins ara eren desconeguts. Tradicionalment, des dels 80 fins al 2002, com a aïllant s’ha fet servir el diòxid de silici. Cap a 2002-2005 es van introduir nous materials com el diòxid d’hafni i l’òxid d’alumini. Però, en el futur els dispositius electrònics estan fets de materials transparents i flexibles, i per tant els hem de començar a estudiar ja. Això és precisament el que estem fent en el meu grup. El material aïllant en el qual més hem profunditzat es diu hexagonal boron nitrate. M’atreviria a dir que som l’únic grup que ha analitzat a fons. Aquest material és molt interessant perquè té una estructura bidimensional a capes, i això li dota d’unes propietats especials. De fet, l’any 2010 hi va haver el boom del grafè, que es pensava que seria la solució, i el que va fer va ser evidenciar que el que continuava fallant era l’aïllant, per molt que innovessin en els conductors i semiconductors.

Com avançarà la nanotecnologia  en el teu àmbit d’estudi?

Hi ha dues idees en aquesta evolució de futur: la primera és fer els components més petits, el que es diu miniaturització; i la segona és donar propietats noves als dispositius. Introduir nous materials en els dispositius podria solucionar els dos problemes alhora.

Però no només treballem per introduir nous materials, també a vegades hem de crear nous dissenys de dispositius per tal d’assolir les prestacions requerides. Per exemple, ara mateix estem treballant en un nou tipus de memòries electròniques anomenades resistive switching memòries, que utilitzen un principi de funcionament basat en un aïllant que es pot trencar (elèctricament parlant) i es torna conductor, i també recuperar i tornar aïllant un altre cop. La transició metall/aïllant es pot utilitzar per simular els uns i zeros del codi binari, i per tant per emmagatzemar informació.

Com que no hi ha emmagatzematge de càrrega, la informació queda retinguda més temps. A més, fabricar una resistive switching memory és més econòmic i simple que fer un transistor, i les transicions d’un estat a l’altre requereixen menys energia i són més ràpides. En el meu grup d’investigació fem aquestes memòries noves amb materials bidimensionals i les analitzem a escala nanomètrica amb la màquina que vaig aprendre a fer servir a Alemanya.

A més d’emmagatzemar informació de forma més eficient, hi ha alguna aplicació nova, desconeguda i revolucionària relacionada amb la nanoelectrònica?

Ara mateix, Intel, IBM, Stanford i totes les grans empreses del Silicon Valley estan treballant en ordinadors neuromòrfics. Els nostres ordinadors actuals segueixen la lògica de von Neumann, és a dir, emmagatzemen dades i les processen de forma separada. Si tu jugues amb una computadora a escacs, la màquina farà milions de càlculs per segon, incloent-hi alguns que són inútils. És el que se’n diu “força bruta”. De fet, per fer una mateixa operació, una computadora consumeix molta més potència que un cervell humà. Les computadores neuromòrfiques en canvi intentaran simular el comportament del cervell humà, processant i emmagatzemant dades de forma conjunta, tal com fan neurones.

En quins àmbits més veurem evolucionar la nanotecnologia en els pròxims anys?

L’avenç en medicina serà també espectacular. No sóc d’aquest camp i no sé fins on es podrà arribar, però per exemple ara hi ha molts estudis sobre drug delivery, que es basa en una tècnica per la qual, per malalties complicades com el càncer, t’introdueixen el medicament combatiu a la sang i només s’entrega on fa falta, allà on hi ha el tumor. O introduir càmeres a dins del cos per localitzar problemes. I tot el que serien pròtesis amb nous materials o en el camp de la ceguera i la sordesa, entre altres.

Cap a on vols que evolucioni la teva carrera a partir d’ara?

És difícil de dir. Potser algun dia tornaria, perquè a Catalunya hi ha molts centres semiprivats on fan recerca potent, sobretot als centres de la xarxa Severo Ochoa, com l’ICN2, l’ICFO o l’ICIQ; en general tots aquests instituts que van ser creats a partir d’una iniciativa del conseller Mas-Colell. Però no tornaria per menys del que tinc a la Xina, ja que allà et proporcionen molts més recursos, el govern inverteix més, els sous són més baixos però el cost de vida també. Nosaltres allà podem fer molts experiments que potser aquí, en la majoria de centres, no podria. Per tot això, crec que en un futur pròxim em quedaré a la Xina uns anys més, i acabaré tornant però no a qualsevol preu.
Podeu escoltar les entrevistes que va oferir a RNE i Ràdio Sant Boi, així com llegir La Contra de La Vanguardia del dia 1 de març de 2018, de la qual va ser el protagonista.